33 research outputs found

    Release of Major Peanut Allergens from Their Matrix under Various pH and Simulated Saliva Conditions—Ara h2 and Ara h6 Are Readily Bio-Accessible

    Get PDF
    The oral mucosa is the first immune tissue that encounters allergens upon ingestion of food. We hypothesized that the bio-accessibility of allergens at this stage may be a key determinant for sensitization. Light roasted peanut flour was suspended at various pH in buffers mimicking saliva. Protein concentrations and allergens profiles were determined in the supernatants. Peanut protein solubility was poor in the pH range between 3 and 6, while at a low pH (1.5) and at moderately high pHs (\u3e8), it increased. In the pH range of saliva, between 6.5 and 8.5, the allergens Ara h2 and Ara h6 were readily released, whereas Ara h1 and Ara h3 were poorly released. Increasing the pH from 6.5 to 8.5 slightly increased the release of Ara h1 and Ara h3, but the recovery remained low (approximately 20%) compared to that of Ara h2 and Ara h6 (approximately 100% and 65%, respectively). This remarkable difference in the extraction kinetics suggests that Ara h2 and Ara h6 are the first allergens an individual is exposed to upon ingestion of peanut-containing food. We conclude that the peanut allergens Ara h2 and Ara h6 are quickly bio-accessible in the mouth, potentially explaining their extraordinary allergenicity

    Lack of evidence for a causal role of CALR3 in monogenic cardiomyopathy

    Get PDF
    The pathogenicity of previously published disease-associated genes and variants is sometimes questionable. Large-scale, population-based sequencing studies have uncovered numerous false assignments of pathogenicity. Misinterpretation of sequence variants may have serious implications for the patients and families involved, as genetic test results are increasingly being used in medical decision making. In this study, we assessed the role of the calreticulin-3 gene (CALR3) in cardiomyopathy. CALR3 has been included in several cardiomyopathy gene panels worldwide. Its inclusion is based on a single publication describing two missense variants in patients with hypertrophic cardiomyopathy. In our national cardiomyopathy cohort (n = 6154), we identified 17 unique, rare heterozygous CALR3 variants in 48 probands. Overall, our patient cohort contained a significantly higher number of rare CALR3 variants compared to the ExAC population (p = 0.0036). However, after removing a potential Dutch founder variant, no statistically significant difference was found (p = 0.89). In nine probands, the CALR3 variant was accompanied by a disease-causing variant in another, well-known cardiomyopathy gene. In three families, the CALR3 variant did not segregate with the disease. Furthermore, we could not demonstrate calreticulin-3 protein expression in myocardial tissues at various ages. On the basis of these findings, it seems highly questionable that variants in CALR3 are a monogenic cause of cardiomyopathy

    Lack of evidence for a causal role of CALR3 in monogenic cardiomyopathy

    Get PDF
    The pathogenicity of previously published disease-associated genes and variants is sometimes questionable. Large-scale, population-based sequencing studies have uncovered numerous false assignments of pathogenicity. Misinterpretation of sequence variants may have serious implications for the patients and families involved, as genetic test results are increasingly being used in medical decision making. In this study, we assessed the role of the calreticulin-3 gene (CALR3) in cardiomyopathy. CALR3 has been included in several cardiomyopathy gene panels worldwide. Its inclusion is based on a single publication describing two missense variants in patients with hypertrophic cardiomyopathy. In our national cardiomyopathy cohort (n = 6154), we identified 17 unique, rare heterozygous CALR3 variants in 48 probands. Overall, our patient cohort contained a significantly higher number of rare CALR3 variants compared to the ExAC population (p = 0.0036). However, after removing a potential Dutch founder variant, no statistically significant difference was found (p = 0.89). In nine probands, the CALR3 variant was accompanied by a disease-causing variant in another, well-known cardiomyopathy gene. In three families, the CALR3 variant did not segregate with the disease. Furthermore, we could not demonstrate calreticulin-3 protein expression in myocardial tissues at various ages. On the basis of these findings, it seems highly questionable that variants in CALR3 are a monogenic cause of cardiomyopathy

    Bioactivity of sphingolipids

    Get PDF
    The main objective of the research described in the present thesis was to increase our understanding concerning the functional relationship between cellular sphingolipids and the regulation of processes such as cell differentiation, apoptosis and multidrug resistance (MDR). The general approach we employed was to modulate the sphingolipid metabolism of cultured cells by pharmacological- and biochemical means, and to study the subsequent effects of these treatments on various cell physiological phenomena. .. Zie: Summary

    Regulation of [Ca2+]i homeostasis in MRP1 overexpressing cells

    Get PDF
    AbstractRegulation of capacitative Ca2+ entry was studied in two different multidrug resistance (MDR) protein (MRP1) overexpressing cell lines, HT29col and GLC4/ADR. MRP1 overexpression was accompanied by a decreased response to thapsigargin. Moreover, inhibition of capacitative Ca2+ entry by D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) was abolished in MRP1 overexpressing cells. Both PDMP and the MRP1 inhibitor MK571 greatly reduced InsP3-mediated 45Ca2+ release from intracellular stores in HT29 cells. Again, these effects were virtually abolished in HT29col cells. Our results point to a modulatory role of MRP1 on intracellular calcium concentration ([Ca2+]i) homeostasis which may contribute to the MDR phenotype
    corecore